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We consider the two-dimensional randomly site diluted Ising model and the random-bond �J Ising model
�also called the Edwards-Anderson model�, and study their critical behavior at the paramagnetic-ferromagnetic
transition. The critical behavior of thermodynamic quantities can be derived from a set of renormalization-
group equations, in which disorder is a marginally irrelevant perturbation at the two-dimensional Ising fixed
point. We discuss their solutions, focusing in particular on the universality of the logarithmic corrections
arising from the presence of disorder. Then, we present a finite-size scaling analysis of high-statistics Monte
Carlo simulations. The numerical results confirm the renormalization-group predictions, and in particular the
universality of the logarithmic corrections to the Ising behavior due to quenched dilution.
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I. INTRODUCTION AND SUMMARY

Random Ising systems represent an interesting theoretical
laboratory in which one can study general features of disor-
dered systems. Among them, the two-dimensional �2D�
random-site and random-bond Ising models have attracted
much interest. In particular, the effects of quenched disorder
on the critical behavior at the paramagnetic-ferromagnetic
transitions, which are observed for sufficiently small disor-
der, have been much investigated and debated; see Refs.
�1–39�.

Renormalization-group �RG� and conformal field theory
�2,4,8,12� predict the marginal irrelevance of random dilu-
tion at the paramagnetic-ferromagnetic transition. Therefore,
the asymptotic behavior is controlled by the standard Ising
fixed point, characterized by the critical exponents �=1 and
�= 1

4 ; disorder gives rise only to logarithmic corrections. The
marginality of quenched disorder coupled to the energy den-
sity, as is the case for random dilution, is already suggested
by the Harris criterion �40�, which states that the relevance or
irrelevance of quenched dilution depends on the sign of the
specific-heat exponent of the pure system; in the case of the
2D Ising model, the specific heat diverges only logarithmi-
cally at the transition, i.e., �=0+. The marginal irrelevance of
disorder has also been supported by numerical studies of
lattice models; see, e.g., Refs. �10,23,24,26,28,32–34,36–38�
�see, however, Refs. �13,14,30� for different scenarios�. We
recall that in three dimensions, random dilution is a relevant
perturbation of the pure Ising fixed point, leading to a new
three-dimensional randomly diluted Ising �RDI� universality
class, which is characterized by different critical exponents;
see, e.g., Refs. �41,42�.

In this paper, we return to the issue of the critical behavior
of 2D randomly diluted Ising systems. By using the RG re-
sults reported in Refs. �3,5,6,28�, we show that their critical
behavior can be derived from the RG equations,

duI

dl
= 2uI + dIut

2,

dut

dl
= ut −

1

2
gut,

duh

dl
=

15

8
uh,

dg

dl
= − g2 +

1

2
g3, �1�

where l is the flow parameter �the logarithm of a length
scale�; uI, ut, and uh are the scaling fields associated with the
leading operators of the three different conformal families of
the 2D Ising model, i.e., the identity, energy, and spin fami-
lies; and g is the marginally irrelevant scaling field associ-
ated with disorder. Higher-order terms in Eqs. �1� are not
necessary, because they can be reabsorbed by appropriate
analytic redefinitions of the scaling fields. The appearance of
the term dIut

2 in the first equation, where dI is a nonuniversal
constant, is due to the resonance of the identity operator with
the thermal operator, which already occurs in the pure Ising
model �43�. It is interesting to note that randomness couples
only to the thermal scaling field ut. It would be interesting to
understand if these conclusions also apply to the irrelevant
operators, i.e., if the only operators that couple disorder are
those that belong to the conformal family of the energy.

The analysis of the RG equations shows that random di-
lution gives rise to logarithmic corrections that are universal
after an appropriate normalization of the scaling field asso-
ciated with disorder. Additional scaling corrections due to the
irrelevant operators are suppressed by power laws as in stan-
dard continuous transitions. For these reasons, we prefer to
distinguish the randomly dilute Ising �RDI� critical behavior
characterized by the RG equations �1� from the standard 2D
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Ising universality class of pure systems, although they share
the same 2D Ising fixed point.

The RG equations �1� allow us to determine the scaling
behavior of any thermodynamic quantity. Denoting with t, h,
p, and L the reduced temperature, the magnetic external
field, the disorder parameter, and the lattice size, respec-
tively, the free energy satisfies the scaling equation

F�t,h,p,L� = e−2luI�l� + e−2l f„ut�l�,uh�l�,g�l�,elL… �2�

�we consider models defined on square L�L lattices with
periodic boundary conditions�, where uI�l�, ut�l�, uh�l�, and
g�l� are the solutions of the RG equations. From Eq. �2�, one
can derive the scaling behavior of the relevant thermody-
namic quantities and determine the logarithmic corrections
due to the quenched disorder. At the critical point t=h=0, we
obtain the asymptotic behaviors �28�

Ch � ln ln L �3�

for the specific heat, and

� = cL7/4f��g�ln L�� = cL7/4�1 + O� 1

ln L
�	 , �4�

R = R*fR�g�ln L�� = R* + O� 1

ln L
� , �5�

dR

dt
= cLg�ln L�1/2fdR�g�ln L�� = c

L

ln L

�1 + O� 1

ln L
�	 ,

�6�

for the magnetic susceptibility �, any RG invariant quantity
R, such as the quartic Binder cumulant U4 and the ratio R�

�� /L, and its derivative with respect to the temperature.
Here R* indicates the Ising fixed-point value and g�ln L� is
the solution of Eq. �1� with l=ln L. For L→�, g�ln L� be-
haves as

g�ln L� �
1

ln L/L0
�1 +

ln ln L/L0

2 ln L/L0
+ ¯ � , �7�

where L0 is a length scale. The functions f��x�, fR�x�, and
fdR�x� are normalized such that f#�0�=1 and are universal
once the scaling field g�ln L� is appropriately normalized. In
the above-reported equations, we have neglected scaling cor-
rections that are suppressed by power laws. They are due to
the analytic dependence of the scaling fields on the Hamil-
tonian parameters, to the background �i.e., the contribution
of the identity operator in the RG language�, and to the irrel-
evant operators �44,45�. In particular, we expect scaling cor-
rections associated with the leading irrelevant operator ap-
pearing in the pure Ising model �the corresponding exponent
is 	=2�.

Moreover, in this paper we compare the theoretical pre-
dictions with a finite-size scaling �FSS� analysis of numerical
Monte Carlo �MC� results for the randomly site-diluted Ising
model and for the random-bond �J Ising model, also known
as the Edwards-Anderson model. Our main results can be
summarized as follows. Our FSS analyses provide robust
evidence that the paramagnetic-ferromagnetic transitions in

these models present the same RDI critical behavior. Note
that this implies that frustration in the random-bond �J Ising
model is irrelevant at the paramagnetic-ferromagnetic transi-
tion line. The FSS behaviors are in agreement with the pre-
dictions of the RG equations �1�. The asymptotic critical be-
havior appears to be controlled by the Ising fixed point. The
logarithmic corrections are consistent with the existence of
universal scaling functions as predicted by Eqs. �1�; cf. Eqs.
�2�–�4�, �6�, and �7�.

The paper is organized as follows. In Sec. II, we define
the randomly site-diluted model and the �J Ising model, we
briefly discuss their phase diagrams, and we define the quan-
tities that we consider in the paper. In Sec. III, we discuss the
RG flow at a 2D Ising fixed point in the presence of a mar-
ginally irrelevant operator, and the implications for the
infinite-volume and finite-size critical behavior. In particular,
we focus on the universal features of the logarithmic correc-
tions due to disorder. Finally, in Sec. IV we present our FSS
analysis of high-statistics MC results for the randomly site-
diluted and random-bond �J Ising models.

II. RANDOMLY SITE-DILUTED AND RANDOM-BOND
±J ISING MODELS

A. The models and their phase diagrams

The randomly site-diluted Ising model �RSIM� is defined
by the Hamiltonian

Hs = − �

xy�


x
y�x�y , �8�

where the sum is extended over all pairs of nearest-neighbor
sites of a square lattice, �x= �1 are Ising spin variables, and

x are uncorrelated quenched random variables, which are
equal to 1 with probability p �the spin concentration� and
zero with probability 1− p �the impurity concentration�. The
RSIM is expected to undergo a continuous transition for any
p� pperc, where �46� pperc=0.593 746 21�13� corresponds to
the site-percolation point of the impurities; moreover, Tc
→0 for p→pperc; see, e.g., Ref. �47�. For p
 pperc, the fer-
romagnetic phase is absent. Thus, the paramagnetic-
ferromagnetic transition line starts from the pure Ising point
XIs= �p=1,T=TIs�, where TIs=2 / ln�1+
2�=2.269 19. . .. is
the critical temperature of the 2D Ising model, and ends at
Xperc= �p= pperc ,T=0�. Along this line, the critical behavior is
expected to be universal, i.e., independent of dilution, and to
be characterized by the RG equations �1�. As we shall see,
this is supported by the analysis of our MC results.

The random-bond �J Ising model, also known as the
Edwards-Anderson model �48�, is defined by the lattice
Hamiltonian

Hb = − �

xy�

Jxy�x�y , �9�

where �x= �1, the sum is over all pairs of nearest-neighbor
sites of a square lattice, and the exchange interactions Jxy are
uncorrelated quenched random variables, taking values �J
with probability distribution
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P�Jxy� = p��Jxy − J� + �1 − p���Jxy + J� . �10�

In the following, we set J=1 without loss of generality. For
p=1, we recover the standard Ising model, while for p= 1

2 we
obtain the bimodal Ising spin-glass model. The �J Ising
model is a simplified model �48� for disordered spin systems
showing glassy behavior in some region of their phase dia-
gram. Its phase diagram in two dimensions is sketched in
Fig. 1 �it is symmetric for p→1− p�. For sufficiently small
values of the probability pa�1− p of the antiferromagnetic
bonds, the model presents a paramagnetic phase and a ferro-
magnetic phase. The paramagnetic-ferromagnetic transition
line starts from the Ising point XIs= �p=1,T=TIs� and ex-
tends up to the multicritical Nishimori point �MNP� X*

= �p* ,T*�, located along the so-called Nishimori line �N line�
defined by 2p−1=tanh�1 /T� �49–52�, with �53� p*

=0.890 81�7� and T*=0.9528�4�. The critical behavior is ex-
pected to be in the same universality class as that of the
transition in the RSIM. As we shall see, our FSS analysis
strongly supports this scenario. A detailed discussion of the
phase diagram can be found in Ref. �53� and references
therein.

B. Observables

In our FSS analyses, we consider models defined on a
square L�L lattice with periodic boundary conditions. The
two-point correlation function is defined as

G�x� � �
�0�x�� , �11�

where the angular and square brackets indicate the thermal
average and the quenched average over disorder, i.e., over 
x
in the case of RSIM and over Jxy in the case of the �J Ising
model. We define the magnetic susceptibility ���xG�x� and
the correlation length �,

�2 �
G̃�0� − G̃�qmin�

q̂min
2 G̃�qmin�

, �12�

where qmin��2� /L ,0�, q̂�2 sin q /2, and G̃�q� is the Fou-
rier transform of G�x�. We also consider quantities that are
invariant under RG transformations in the critical limit. Be-
side the ratio

R� � �/L , �13�

we consider the quartic cumulants U4 and U22 defined by

U4 �
��4�
��2�2 , U22 �

��2
2� − ��2�2

��2�2 , �14�

where

�k � ���
x

�x�k� . �15�

The above RG-invariant quantities R�, U4, and U22 are also
called phenomenological couplings. In the critical �T=Tc�
2D pure Ising model, they converge for large L to the uni-
versal values �54�

R
�
* = RIs = 0.905 048 829 2�4� , �16�

U4
* = UIs = 1.167 923�5� , �17�

U22
* = 0. �18�

Finally, we consider the derivatives

R�� �
dR�

d�
, U4� �

dU4

d�
, �19�

which can be computed by measuring appropriate expecta-
tion values at fixed � and p.

III. RENORMALIZATION-GROUP FLOW AND
FINITE-SIZE SCALING

A. Ising RG flow in the presence of a marginally irrelevant
scaling field associated with disorder

In this section, we discuss the RG flow close to the 2D
Ising fixed point in the presence of a marginally irrelevant
scaling field associated with disorder.

Let us consider a system with a marginal scaling field
û0� ĝ and with a set of scaling fields ûk, k�1, with RG
dimensions yk�0. Close to the fixed point ĝ= û1= ¯ =0, the
RG equations have the form

dĝ

dl
= �

0
i
j

b0,ijûiûj + �
0
i
j
m

b0,ijmûiûjûm + ¯ ,

dûk

dl
= ykuk + �

0
i
j

bk,ijûiûj + �
0
i
j
m

bk,ijmûiûjûm + ¯ .

�20�

If there are no degeneracies �yk�yh for all k�h� and no
resonancies �i.e., there is no combination with integer coef-
ficients of the RG dimensions that vanishes�, one can rede-
fine the scaling fields in such a way to simplify the RG
equations. We define

g = ĝ + �
0
i
j

c0,ijûiûj + �
0
i
j
m

c0,ijmûiûjûm + ¯ , �21�

� �
� �

� �
� �

0

T

para

1−p

ferro
MNP

para

N line

Is

glassy

Is= +log
RDI

FIG. 1. �Color online� Phase diagram of the square-lattice
random-bond �J Ising �Edwards-Anderson� model in the T-p
plane.
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uk = ûk + �
0
i
j

ck,ijûiûj + �
0
i
j
m

ck,ijmûiûjûm + ¯ .

�22�

With a proper choice of the coefficients ck,ij, ck,ijm , . . ., we
can simplify the RG equations, obtaining the simple canoni-
cal form

dg

dl
= − b2g2 − b3g3, �23�

duk

dl
= ykuk + ckguk. �24�

By normalizing appropriately the scaling field g, we can also
set �b2�=1. In the case we are considering, g is marginally
irrelevant so that b2�0 �we assume that g is defined such
that g�l=0��0�. We can thus set b2=1. Once this choice has
been made, b3 and all coefficients ck are universal.

The simple form we have derived above does not strictly
apply to the RSIM. Indeed, in the Ising model the RG op-
erators belong to three different conformal families and
within each family the RG dimensions differ by integers �see
Ref. �45� for a discussion of the irrelevant operators in the
pure Ising model�. Thus, in the present case there are both
degeneracies and resonancies. If we limit our considerations
to the relevant scaling fields, we must only consider the reso-
nance between the identity operator and the thermal operator,
which is responsible for the logarithmic divergence of the
specific heat in the pure Ising model �43�. By a proper re-
definition of the nonlinear scaling fields, one can show that
in this case the RG equations �20� for the relevant scaling
fields can be written as

duI

dl
= 2uI + cIguI + dIut

2, �25�

dut

dl
= ytut + ctgut, �26�

duh

dl
= yhuh + chguh, �27�

dg

dl
= − g2 − b3g3, �28�

where the couplings to the irrelevant scaling fields due to the
additional resonancies have been neglected. The scaling field
uI is associated with the identity operator. The additional
term dIut

2, which appears in Eq. �25�, is due to the resonance
with the thermal operator, as in the pure Ising model �43�.
The scaling fields ut and uh are the relevant scaling fields
associated with the reduced temperature t and the external
field h, respectively; yt=1 and yh=15 /8 are the correspond-
ing RG dimensions. Finally, g is the marginally irrelevant
operator associated with randomness. The coefficients cI, ct,
ch, and b3 are universal, being independent of the normaliza-
tion of the scaling fields. By using conformal field theory, ct,
ch, and b3 have been computed �3,5,6,19,28�,

ct = − 1
2 , ch = 0, b3 = − 1

2 . �29�

Let us now integrate the RG equations. Since b3�0, Eq. �28�
has two fixed points with g�0: one is g=0 and is stable; the
second one is g=−1 /b3=2 and is unstable. Thus, the basin of
attraction of the Ising FP corresponds to g0=g�l=0��
−1 /b3=2; for g0�2, g�l� flows to infinity. It is important to
note that Eq. �28� is only valid within the basin of attraction
of the stable fixed point g=0. The redefinitions of the scaling
fields that we have used to obtain the simple canonical form
�28� cannot be extended outside the basin of attraction since
they are expected to become singular at the unstable fixed
point. The presence of an unstable fixed point indicates that
the behavior for large values of the disorder is not controlled
by the Ising fixed point. The RG flow could be attracted by a
new fixed point—thus, for large values of the disorder the
transition would be continuous and in a new universality
class—or could go to infinity, indicating the absence of a
continuous transition. A similar phenomenon was conjec-
tured in three dimensions �55� on the basis of a perturbative
field-theoretical analysis of the RG flow.

If g0�−1 /b3, the function g�l� is implicitly given by �we
do not replace b3 with its theoretical value − 1

2 , in order to
obtain general expressions that can be tested numerically�

F�g�l�� = l + F�g0� ,

F�x� �
1

x
+ b3 ln� x

1 + b3x
� . �30�

The solution can be simplified if we introduce

g̃�l� =
g�l�

1 + b3g�l�
, �31�

which satisfies the implicit equation

F̃�g̃�l�� = l + F̃�g̃0� ,

F̃�x� �
1

x
+ b3 ln x . �32�

This equation can be inverted to give

g̃�l� = ��g̃0,l� . �33�

The function ��x , l� cannot be computed analytically. How-
ever, it is easy to determine it in the large-l limit. We obtain

g̃�l� =
1

y
−

b3 ln y

y2 +
b3

2�ln2 y − ln y�
y3 + O�b3

3 ln3 y

y4 � ,

�34�

where y� l+ F̃�g̃0�. Since ch=0, the equation for uh gives

uh�l� = uh,0eyhl, �35�

where uh,0=uh�l=0�. In order to determine ut�l�, we rewrite
the corresponding equation as
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dut

ut
= ytdl − ct

gdg

g2 + b3g3 = ytdl − ct
dg̃

g̃
, �36�

which gives �ct=−1 /2, yt=1�

ut�l� = ut,0el� g̃�l�
g̃0

	1/2

, �37�

where ut,0=ut�l=0�. For large l, the function ut�l� behaves as

ut�l� = ut,0g̃0
−1/2 el

l1/2 . �38�

Let us finally consider the identity operator. If dI=0, the
solution can be obtained as in the case of ut. Thus, we write

uI�l� = uI,0e2lK�l�� g̃�l�
g̃0

	−cI

, �39�

where K�l� is an unknown function of l, such that K�l=0�
=1. Substituting in the equation for uI�l� and using the result
for ut�l�, we obtain

dK

dl
= dI

ut,0
2

uI,0
� g̃�l�

g̃0
	cI+1

, �40�

and therefore

K�l� = 1 − dI

ut,0
2

uI,0
g̃0

−cI−1�
g̃0

g̃�l�

dxxcI−1�1 − b3x� . �41�

The behavior of uI�l� for l→� depends on the value of cI.
Since the integral appearing in K�l� diverges as l−cI for cI
�0, as ln l for cI=0, and is finite for cI�0, we obtain

uI�l� � �e2llcI for cI � 0,

e2l ln l for cI = 0,

e2l for cI � 0.
� �42�

The RG equations do not fix completely the normalization of
the scaling fields. First, one can redefine ut, uh, and uI by a
multiplicative constant �56�; such a redefinition is not pos-
sible for g, since a multiplicative constant would break the
condition b2=1. Beside these trivial redefinitions, there is
also a nonlinear set of transformations that leave the equa-
tions invariant. Given a constant �, we define g� as the so-
lution of the equation

F�g�� = F�g� + � . �43�

Then, for any � we have

dg�

dl
= − g�

2 − b3g�
3 . �44�

Note that the transformation is analytic in a neighborhood of
g=0. If g̃� is defined as in Eq. �31�, we obtain

g̃� = g̃�1 − �g̃ + O�g̃2�� . �45�

Analogously, if we define

ut,� = ut�g̃/g̃��−1/2, �46�

then ut,� satisfies the same equation of ut with g� replacing g,
as can be seen from Eq. �37�. A similar redefinition can be

made for uI. This invariance implies that, beside fixing the
normalizations of ut, uh, and uI, we must also appropriately
fix g. In practical terms, F�g0� is completely arbitrary and
must be fixed in order to define g�l� unambiguously. Finally,
note that there are no analytic redefinitions of g that map Eq.
�28� in an identical equation with b3��b3, proving the uni-
versality of b3.

Neglecting scaling corrections that are suppressed by
power laws, we write the free energy in the scaling form �43�

F�t,h,p� = e−2luI�l� + e−2l fsing„ut�l�,uh�l�,g�l�… �47�

for any l. Note that the whole dependence on t�T /Tc−1, h,
and p is encoded in the constants g̃0, ut,0, uh,0, uI,0, and dI. Of
course, ut,0� t and uh,0�h vanish at the critical point, while
g̃0 vanishes for p=1. The independence of Eq. �47� on l
allows us to simplify the general expression for the free en-
ergy. We choose l such that ut�l�=1 and thus

el = �−1�− ln ��1/2�1 + O� ln�ln ��
ln �

�	 ,

g̃�l� = −
1

ln �
�1 + O� ln�ln ��

ln �
�	 , �48�

where �=ut,0 / g̃0
1/2. Substituting these expressions in Eq. �47�,

we obtain the general dependence of the free energy on t and
h.

In order to determine cI, we consider the specific heat Ch.
The leading singular behavior is due to the temperature de-
pendence of the scaling field uI. Using Eq. �42�, we obtain

Ch �
�2F�t,0,p�

�t2 � ��ln 1/t�cI for cI � 0,

ln ln�1/t� for cI = 0,

constant for cI � 0.
� �49�

The asymptotic behavior of the specific heat of 2D randomly
diluted Ising systems has been determined in Refs. �1,2,4�,
obtaining

Ch � ln ln�1/t� . �50�

Comparing with Eq. �49�, we obtain cI=0. In this case, we
have

uI�l� = uI,0e2l −
dIut,0

2 e2l

g̃0
�ln

g̃�l�
g̃0

− b3�g̃ − g̃0�	 . �51�

It is interesting to note that, since ch=cI=0, randomness
couples only to the thermal scaling field ut. This result ap-
pears quite natural from the point of view of the Landau-
Ginzburg-Wilson approach to critical phenomena. Indeed, in
field theory, randomly diluted models are obtained by cou-
pling disorder to the energy operator �57,58�,

H =� ddx�1

2
�����x��2 +

1

2
r��x�2

+
1

2
��x���x�2 +

1

4!
g0���x�2�2� , �52�

where r�T−Tc, and ��x� is a spatially uncorrelated random
field with Gaussian distribution. The 2D RDI critical behav-
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ior has been also investigated by using this field-theoretical
approach and the so-called replica trick. The analysis of the
corresponding five-loop perturbative expansions �7,34� gives
results that are substantially consistent with the marginal ir-
relevance of disorder.

B. Finite-size scaling

Let us now discuss the implications of the above RG
analysis for the FSS of thermodynamic quantities at the criti-
cal point. We start from the scaling behavior of the free en-
ergy,

F�t,h,p,L� = e−2luI�l� + e−2l f„ut�l�,uh�l�,g�l�,elL−1
… ,

�53�

where the contributions of the irrelevant scaling fields have
been neglected. By choosing l=ln L, we can write

F�t,h,p,L� = L−2uI�ln L� + L−2f„ut�ln L�,uh�ln L�,g�ln L�… .

�54�

If we set F̃�g̃0�=−ln L0 in Eq. �32�, for L→� we have

g̃�ln L� =
1

ln L/L0
�1 − b3

ln ln L/L0

ln L/L0
+ O� 1

�ln L/L0�2�	 .

�55�

The free energy can then be written as

F�t,h,p,L� = k1 ln g̃�ln L� + k2 + k3g̃�ln L�

+ f„ut,0Lg̃�ln L�1/2,uh,0L15/8, g̃�ln L�… . �56�

The constants ki, ut,0, uh,0, and L0 depend on t, h, and p.
Moreover, ut,0� t and uh,0�uh�h close to the critical point.
The terms proportional to k1, k2, and k3 are due to the iden-
tity operator, whose dependence on g̃�ln L� is given in Eq.
�51�. Equation �56� is valid up to contributions of the irrel-
evant operators, which are expected to scale as inverse pow-
ers of L.

From Eq. �56�, we can compute zero-momentum quanti-
ties that involve disorder averages of a single thermal aver-
age. For instance, for the specific heat at T=Tc and h=0 we
obtain

Ch � ln ln L . �57�

For the susceptibility at h=0, we obtain

� = � �uh,0

�h
�2

L7/4f�„ut,0Lg̃�ln L�1/2, g̃�ln L�… , �58�

where, as before, we neglect power-law scaling corrections.
A similar scaling equation holds for U4,

U4 = fU4
„ut,0Lg̃�ln L�1/2, g̃�ln L�… . �59�

The determination of the scaling behavior of U22 and R�

�� /L requires an extension of the scaling ansatz �56�. A
detailed discussion is presented in Sec. 3.1 of Ref. �42�. It
shows that both quantities behave as U4, apart from scaling
corrections. Thus, if R=U22 or R=R�, we also have

R = fR„ut,0Lg̃�ln L�1/2, g̃�ln L�… . �60�

Derivatives of the phenomenological couplings have a
simple behavior as well, the leading term being of the form

�R

d�
= � �ut,0

�t
�Lg̃�ln L�1/2fdR„ut,0Lg̃�ln L�1/2, g̃�ln L�… .

�61�

At the critical point we can set ut,0=0, so that we can write
the scaling behaviors

R = gR�g̃�ln L�� ,

�R

d�
= � �ut,0

�t
�Lg̃�ln L�1/2gdR�g̃�ln L�� . �62�

The functions gR�x� and gdR�x� are universal once an appro-
priate normalization is chosen for g̃�ln L�, which is indepen-
dent of the model. For this purpose, let us consider a phe-
nomenological coupling R. For L→�, we can expand

R = R* + r1g̃�ln L� + r2g̃�ln L�2 + ¯ . �63�

Now we normalize g̃�ln L� by requiring r2=0. It is easy to
prove that this is a correct normalization condition. Indeed,
imagine that g̃�ln L� has been normalized arbitrarily so that
r2�0. Then, redefine g̃�ln L� by using Eq. �45�. By properly
choosing �, it is easy to see that one can set r2=0. This
condition fixes uniquely the scale L0.

Note that, in the pure Ising model, we have U22=0, so that
we expect at the critical point

U22 � g̃�ln L� �64�

for L→�. It is natural to invert this relation to express
g̃�ln L� in terms of U22�L�. Then, we obtain the scaling forms

R�L� = f̃R�U22� , �65�

��L� = d�L7/4 f̃��U22� , �66�

�R�L�
d�

= ddRLU22
1/2 f̃ dR�U22� , �67�

where f̃R�x�, f̃��x�, and f̃ dR�x� are universal scaling functions

that are normalized such that f̃R�0�=R*, f̃��0�= f̃ dR�0�=1 and
have a regular expansion in powers of x. Note that these
scaling equations are much simpler than those in terms of
g̃�ln L�, since they are independent of the scale L0 and of the
normalization of g̃�ln L�.

C. Finite-size scaling at a fixed phenomenological coupling

Instead of computing the various quantities at fixed
Hamiltonian parameters, one may study FSS keeping a phe-
nomenological coupling R fixed at a given value Rf, as pro-
posed in Ref. �59� and also discussed in Refs. �42,60�. This
means that, for each L, one considers � f�L� such that
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R„� = � f�L�,L… = Rf . �68�

All interesting thermodynamic quantities are then computed
at �=� f�L�. The pseudocritical temperature � f�L� converges
to �c as L→�.

In the next section, we report a FSS analysis of MC simu-
lations keeping the phenomenological coupling R� fixed. The
value Rf can be specified at will as long as it is between the
corresponding high-temperature and low-temperature values.
Since we wish to check the hypothesis that the asymptotic
critical behavior is governed by the Ising fixed point, we
choose R�,f =RIs, where RIs=0.905 048 829 2�4� is the uni-
versal value of R��� /L at the critical point in the 2D Ising
universality class �54� for square L�L lattices with periodic
boundary conditions. Note, however, that this choice does
not bias our analysis in favor of the Ising nature of the tran-
sition. By fixing R� to the critical Ising value, we can per-
form the following consistency check: if the transition be-
longs to the Ising universality class, then any other RG-
invariant quantity must converge to its critical-point value in
the Ising model.

In the �t ,L� plane, the line R�=RIs is obtained by solving
the equation

fR�
„ut,0Lg̃�ln L�1/2, g̃�ln L�… = RIs. �69�

It gives a relation

ut,0Lg̃�ln L�1/2 = k�g̃�ln L�� , �70�

where k�x� has a regular expansion in powers of x. More-
over, since we have chosen R�,f =RIs, we have k�0�=0. Sub-
stituting relation �70� in the above-reported scaling equations
for the susceptibility �, the phenomenological couplings R,
and their derivative, we obtain at fixed R�

��L� = c�L7/4C��g̃�ln L�� , �71�

R�L� = CR�g̃�ln L�� , �72�

�R�L�
d�

= cdRLg̃�ln L�1/2CdR�g̃�ln L�� . �73�

The scaling functions are universal, have a regular expansion
in powers of g̃�ln L�, and are normalized such that CR�0�
=RIs, C��0�=CdR�0�=1. The additional corrections due to the
irrelevant operators decay as powers of 1 /L.

The large-L behavior of � f�L� follows from Eq. �70�.
Since k�x��x+O�x2�, we obtain

� f − �c =
c1g̃�ln L�1/2

L

=
c1

L
ln L/L0
�1 −

b3

2

ln ln L/L0

ln L/L0
+ O� 1

ln L/L0
�	 ,

�74�

where L0 is computed at the critical point t=0.
We finally mention that Eqs. �65�–�67� hold at fixed R�

=RIs as well. The corresponding universal scaling functions

depend on the values of U22 at R�=RIs fixed, i.e., Ū22�L�

=U22(� f�L� ,L) �we denote them by f̄R�Ū22�, f̄��Ū22�, and

f̄ dR�Ū22�, respectively� and have a regular expansion in pow-

ers of Ū22.

IV. FINITE-SIZE SCALING ANALYSIS OF
MONTE CARLO SIMULATIONS

A. Monte Carlo simulations

We perform high-statistics MC simulations of the RSIM
at p=0.9,0.7, and of the �J Ising model at p=0.95. We
consider square lattices of linear size L with periodic bound-
ary conditions. In the MC simulations of the RSIM, we use a
mixture of Metropolis and Wolff cluster �61� updates as we
did in the three-dimensional case reported in Ref. �42�. In the
case of the �J Ising model, the Wolff cluster update is ex-
pected to be slow �62� so that we only use Metropolis up-
dates with multispin coding.

Instead of computing the different quantities at fixed
Hamiltonian parameters, we compute them at fixed R�

�� /L=RIs. This means that, given a MC sample generated at
�=�run, we determine the value � f such that R���=� f�=Rf.
All interesting observables are then computed at �=� f. The
pseudocritical temperature � f converges to �c as L→�. This
method has the advantage that it does not require a precise
knowledge of the critical value �c �an estimate is only
needed to fix �run that should be close to �c�. Moreover, for
some observables the statistical errors at fixed R� are smaller
than those at fixed � �close to �c� �42,60�. In order to com-
pute any quantity at �=� f, we determine its Taylor expan-
sion around �run, as we did in our previous work �62�. Par-
ticular care has been taken to avoid any bias due to the finite
number of iterations for each sample: we use the method
described in Ref. �42� and extended to correlated data in Ref.
�62�.

The results at fixed R�=RIs are reported in Table I. For
each model and lattice size L, we report the number Ns of
samples, the MC estimates of the quartic cumulants U4 and

U22 at fixed R�=RIs �we denote them with Ū4 and Ū22, re-
spectively�, the magnetic susceptibility �, the derivative R��
�dR� /d�, and the specific heat Ch.

B. Results

1. Approach to the 2D Ising fixed-point values

Since we perform our FSS analysis keeping R�=RIs fixed,
if the critical behavior is controlled by the Ising fixed point,
in the large-L limit we should have

Ū22�L� → 0, Ū4�L� → UIs, �75�

where �54� UIs=1.167 923�5� is the universal large-L limit of
the quartic �Binder� cumulant at the critical point in the 2D
Ising model. Since disorder is expected to be marginally ir-

relevant, see Sec. III A, the approach of Ū22 and Ū4 to their
large-L Ising limit is expected to be logarithmic.

The MC data of Ū4 and Ū22, reported in Table I, clearly

approach the Ising values �75�. In the case of Ū4, see Table I,
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the MC data are very close to UIs=1.167 923�5�. For the

largest lattices, the relative difference �4��Ū4−UIs� /UIs is
very small: �4�0.0012, 0.0041, and 0.0023 for the RSIM at
p=0.9 �L=512� and p=0.7 �L=256�, and the �J Ising
model at p=0.95 �L=128�, respectively. However, the
asymptotic approach to the large-L Ising value is very slow,
hinting at logarithmic corrections. This is also strongly sug-

gested by the MC data of Ū22, which are shown versus
1 / ln L in Fig. 2.

In order to check the approach of the critical exponents to
the Ising values, we define the effective exponents

�eff�L� � 2 −
ln ��2L�/��L�

ln 2
�76�

and

1/�eff�L� �
ln R���2L�/R���L�

ln 2
, �77�

1/�U,eff�L� �
ln U4��2L�/U4��L�

ln 2
, �78�

where we indicate the derivative with respect to � with a
prime. The MC estimates of �eff�L� and 1 /�eff�L� are plotted
in Figs. 3 and 4. They appear to approach the Ising values
�= 1

4 and 1 /�=1. In the case of �, the raw data are already

TABLE I. MC data at fixed R�=RIs=0.905 0488 292�4�. For each model and lattice size L, we report the number of samples Ns, the

quartic cumulants Ū4 and Ū22, the magnetic susceptibility �, the derivative R���dR� /d�, and the specific heat Ch. If the asymptotic behavior

is controlled by the Ising fixed point, for L→� we should have Ū4→UIs=1.167 923�5� and Ū22→0.

Model L Ns /103 Ū4 Ū22 � R�� Ch

RSIM, p=0.9 8 5361 1.16476�3� 0.05083�3� 36.1853�9� 6.5911�11� 2.7285�5�
16 2560 1.16463�4� 0.04170�4� 122.367�4� 12.608�5� 3.4282�12�
32 1280 1.16507�4� 0.03618�4� 412.573�14� 24.029�9� 4.0283�14�
64 640 1.16563�6� 0.03237�6� 1389.57�8� 45.91�3� 4.550�3�
128 640 1.16597�6� 0.02947�6� 4677.0�3� 87.84�7� 5.014�3�
256 653 1.16619�5� 0.02704�5� 15741.3�7� 168.50�9� 5.431�3�
512 633 1.16656�4� 0.02522�5� 52962�2.0� 324.18�19� 5.815�3�

RSIM, p=0.7 8 640 1.14557�10� 0.09561�10� 25.841�3� 1.2536�13� 0.2155�3�
16 2176 1.15206�6� 0.07526�6� 86.941�5� 2.6583�11� 0.30474�14�
32 1280 1.15682�6� 0.06297�7� 293.888�15� 4.967�2� 0.35203�12�
64 658 1.15996�7� 0.05491�8� 993.26�6� 9.140�4� 0.38283�10�
128 843 1.16185�6� 0.04871�7� 3351.92�14� 16.903�6� 0.40516�7�
256 1288 1.16313�4� 0.04368�5� 11299.1�3� 31.501�9� 0.42262�5�

�J Is, p=0.95 8 3200 1.16399�2� 0.04026�3� 40.9962�8� 6.0887�15� 2.6027�7�
16 3200 1.16405�3� 0.04023�3� 139.318�5� 11.163�2� 3.1527�8�
32 3200 1.16439�2� 0.03847�3� 470.511�11� 20.924�3� 3.6299�5�
64 812 1.16482�4� 0.03592�5� 1585.27�7� 39.570�10� 4.0371�7�
128 658 1.16527�4� 0.03331�6� 5337.0�3� 75.12�2� 4.3865�5�

0.0 0.1 0.2 0.3 0.4 0.5
1/ln L

0.00
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0.08

0.10

U
22

RSIM p=0.9
RSIM p=0.7
+-J p=0.95

_

FIG. 2. �Color online� The phenomenological coupling Ū22 vs
1 / ln L. The lines show the results of fits to Eq. �87�. For the RSIM
at p=0.9 and the �J Ising model we fit all data, while for the RSIM
at p=0.7 we use data satisfying L�16. Note that the asymptotic
slope as 1 / ln L→0 of the resulting curves is identical in the three

cases, confirming the universality of C22,1, defined by Ū22

=C22,1g̃�ln L�+O�g̃�ln L�3�; see Sec. IV B 3.

10 100
L

0.235

0.240

0.245

0.250

η
eff

RSIM p=0.9
RSIM p=0.7
+-J p=0.95

FIG. 3. �Color online� MC estimates of �eff�L�. The dashed line
corresponds to the Ising value �= 1

4 . The dotted lines are drawn to
guide the eye.
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very close to the Ising value: the largest lattices give �eff�L
=256�=0.249 59�8� for the RSIM at p=0.9, �eff�L=128�
=0.246 86�8� for the RSIM at p=0.7, and �eff�L=64�
=0.248 71�10� for the �J Ising model at p=0.95. In the case
of 1 /�eff�L�, the approach is much slower. At the largest
available lattices, we find 1 /�eff�L=256�=0.9441�12� for the
RSIM at p=0.9, 1 /�eff�L=128�=0.8981�7� for the RSIM at
p=0.7, and 1 /�eff�L=64�=0.9249�5� for the �J Ising model
at p=0.95. Anyway, all data show an upward trend toward
the Ising value 1 /�=1.

These results provide quite strong evidence that the
asymptotic behavior of the FSS is universal and is controlled
by the Ising fixed point, with scaling corrections that decay
very slowly. In the following, we report a more careful
analysis of these logarithmic corrections, showing that they
have an universal pattern that is consistent with the RG pre-
dictions obtained in Sec. III.

2. Universal finite-size behavior as a function of the
phenomenological coupling U22

As discussed in Sec. III B, the FSS formulas obtained
from the RG equations of Sec. III A can be written in terms
of the phenomenological coupling U22. In the following, we
compare the MC data with the predictions reported in Secs.
III B and III C, and in particular with Eqs. �65�–�67�.

Let us first consider the quartic cumulant Ū4 defined in

Eq. �14�. At fixed R�, Ū4�L� is expected to behave as

Ū4�L� = f̄U4
�Ū22� , �79�

where f̄U4
�x� is a universal function, analytic at x=0, satis-

fying f̄U4
�0�=UIs. Corrections to the behavior �79� vanish as

powers of 1 /L. The scaling behavior �79� is well satisfied by
the MC data, as shown in Fig. 5. All data fall on a single
curve, except for a few of them corresponding to small val-
ues of L �this is particularly evident in the data for the RSIM
at p=0.9�, indicating the presence of power-law scaling cor-
rections. The results show that the linear term is absent or

negligible in the expansion of f̄U4
�Ū22� around Ū22=0; if the

data are plotted versus Ū22
2 , they fall on an approximately

straight line, suggesting that

Ū4�L� − UIs = cŪ22�L�2 + O�Ū22
3 � . �80�

A fit of the numerical results to Ū4�L�−UIs=cŪ22�L�2 gives
c=2.4�2�. This implies that

Ū4�L� = UIs +
c4

�ln L/L0�2 + ¯ , �81�

where L0 is the model-dependent constant that appears in the
expansion of g̃�ln L� �as such, it is independent of the quan-
tity that one is considering�.

As discussed in Secs. III B and III C, at fixed R�, � be-
haves as

� = d�L7/4 f̄�„Ū22�L�… , �82�

where f̄��x� is a universal function such that f̄��0�=1. This
means that, by properly choosing constants e�, the combina-

tion e��L−7/4 is a universal function of Ū22. In Fig. 6, we
show this quantity. The plot is clearly consistent with Eq.

�82�. Note also that if the data are plotted versus Ū22
2 , they

approximately fall on a straight line, suggesting f̄��x�=1

+O�x2�, analogously to the case of Ū4.
In Fig. 4, we showed the effective exponents �77� and

�78� related to the thermal exponent �. The data approached
the Ising value �Is=1 with slowly decaying corrections. The
effective exponents computed by using Eqs. �77� and �78�
were very close, as shown in Fig. 4 for the RSIM at p=0.9
�this is also true for the other model considered�. For this
reason, in the following we focus on R��. As discussed in
Secs. III B and III C, the derivative R�� at fixed R� scales as

10 100
L

0.80

0.85

0.90

0.95

1.00

1/ν
eff

RSIM p=0.9, from dRξ/dβ
RSIM p=0.7, from dRξ/dβ
+-J p=0.95, from dRξ/dβ
RSIM p=0.9, from dU

4
/dβ

FIG. 4. �Color online� MC estimates of 1 /�eff�L�. The dashed
line corresponds to the Ising value 1 /�=1. The dotted lines are
drawn to guide the eye.
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FIG. 5. �Color online� UIs− Ū4 vs Ū22 �above� and Ū22
2

�below�.
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R�� = ddRLŪ22�L�1/2 f̄ dR„Ū22�L�… , �83�

where f̄ dR�x� is a universal function. This means that, by
properly choosing some constants edR, the combination

edRR�� /L is a universal function of Ū22. In Fig. 7, we show
such a quantity. The plot is clearly consistent with Eq. �83�:
the data fall on a single curve and approach zero as Ū22�L�1/2

when Ū22→0. Again, note the presence of power-law cor-

rections for large values of Ū22.
The approach of � f�L� to �c is given by Eq. �74�. Equiva-

lently, we can also consider the scaling form

� f�L� − �c =
d1Ū22�L�1/2

L
+

d2Ū22�L�3/2

L
+ ¯ . �84�

We determine �c by performing fits to Eq. �84�. We include
only data such that L�Lmin, where Lmin is the smallest cutoff
that provides fits with �2 /DOF�1. Moreover, as a check we
have also performed fits to Eq. �84� in which we only con-
sider the leading term �i.e., we set d2=0�. For the RSIM at
p=0.9, we obtain �c=0.525 838�1� �fit with d2=0� and �c
=0.525 835�2�, if both terms are taken into account. Analo-
gously, these two fits give �c=0.932 94�1� ,0.932 89�3� for
the RSIM at p=0.7 and �c=0.533 62�1� ,0.533 48�2� for the
�J Ising model. Our final estimates are �c=0.525 835�3�,
0.932 89�5�, and 0.5335�1�, respectively, for the RSIM at p
=0.9 and 0.7, and the �J Ising model at p=0.95. Consistent
results are obtained by fitting the data of � f�L� to Eq. �74�.

3. Universal logarithmic corrections as a function of L

In the following, we directly check the dependence on L

of Ū22, R��, and of the specific heat Ch. As discussed in Sec.

III C, for L→� the phenomenological coupling Ū22 behaves
as

Ū22�L� = C22,1g̃�ln L� + O�g̃3� , �85�

where C22,1 is a universal constant. The absence of the term
of order g̃2 fixes uniquely the normalization of the coupling
g̃. This quantity can be expanded in powers of 1 / ln�L /L0� to
different orders. Using the expansion �34� with y=ln L /L0,
we can perform three different types of fit, corresponding to
three different approximations for g̃�ln L�. In fit �a�, we fit

Ū22�L� to

Ū22�L� =
C22,1

ln L/L0
, �86�

where C22,1 and L0 are free parameters. In fit �b�, we also
include the next term proportional to b3, i.e., we fit the data
to

Ū22�L� =
C22,1

ln L/L0
−

C22,1b3 ln ln L/L0

�ln L/L0�2 , �87�

where C22,1, b3, and L0 are free parameters. Finally, we can
also include the next term obtaining �fit �c��

Ū22�L� = C22,1� 1

ln L/L0
−

b3 ln ln L/L0

�ln L/L0�2

+
b3

2��ln ln L/L0�2 − ln ln L/L0�
�ln L/L0�3 � , �88�

where C22,1, b3, and L0 are free parameters. The results of the
fits for different values of Lmin are reported in Table II. Let us
consider first the fit of the data for the RSIM at p=0.9 for
which we have the largest lattices. Fit �a� has a very poor �2,
indicating that the data are not well fitted by a single loga-
rithmic term. If we include the next correction the �2 drops
dramatically, indicating that our results are precise enough to
be sensitive to the elusive ln ln L /L0 terms. Beside the very
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FIG. 6. �Color online� Plot of ln�e��L−7/4� vs Ū22 �top� and vs

Ū22
2 �bottom�; we set e�=1,1.4,0.88 for the RSIM at p=0.9 and

0.7, and for the �J Ising model. The constants e� have been chosen
so as to obtain the best collapse of the MC data.
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FIG. 7. �Color online� Plot of edRR�� /L vs Ū22
1/2. We have chosen

edR=1,6.9,1.2 for the RSIM at p=0.9 and 0.7, and for the �J Ising
model. The constants edR have been chosen so as to obtain the best
collapse of the MC data.
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good �2, the results are also very stable with Lmin. This sta-
bility should not be trusted too much, however, since fit
�c�—which a priori should be better since we include an
additional set of corrections—has a very poor �2 and gives
results that vary somewhat with Lmin. As an additional check,

we also fit Ū22�L� to

Ū22�L� = C22,1g̃�ln L� + C22,3g̃�ln L�3, �89�

using the expansion of g̃�ln L� used in fit �c�. For Lmin
=8,16,32 we obtain �2 /DOF=213 /3,135 /2,16 /1; they are
better than those obtained in fit �c�, but still significantly
worse than those obtained in fit �b�. Correspondingly,
we obtain C22,1=0.210�1� ,0.254�3� ,0.268�10� and b3
=1.44�1� ,0.89�10� ,1.0�3� for the same values of Lmin. Fi-

nally, we fit Ū22�L� to Eq. �89� by using the exact expression
for g̃�ln L�: for each L /L0, g̃�ln L� is obtained by inverting

F̃�g̃�=ln L /L0, where F̃�x� is defined in Eq. �32�. If we only
include the leading term, i.e., we set C22,3=0, the quality of
the fit is significantly worse than that of fit �b� and better than
that of fit �c�: �2 /DOF=515 /4,52 /3,6 /2 for Lmin
=8,16,32. Correspondingly, C22,1�0.27,0.29,0.31 and b3
�2.0,2.4,2.7. Though the scatter of the estimates of C22,1 is
significantly larger than the statistical errors—this should be
expected since �2 /DOF is significantly larger than 1 in most
of the cases—the data show a clear pattern. If we take the
central estimate from fit �b�, we obtain C22,1�0.28. To esti-
mate a reliable error, note that all results of the fits with
Lmin�16 lie in the interval 0.23�C22,1�0.31. A conserva-
tive error is therefore �0.05, so that C22,1=0.28�5�. It is
more difficult to estimate b3, since this parameter varies sig-
nificantly from one fit to the other. In any case, note that all
results satisfy b3�0, in contrast with the theoretical predic-
tion b3=− 1

2 . It is not clear if this difference should be taken
seriously. It might be that it is only an indication that we are
not sufficiently asymptotic to estimate correctly the coeffi-
cient of the slowly varying ln ln L /L0 term.

Since C22,1 is universal, we can check its estimate by
comparing the above-reported results with those obtained in
the other two models, for which we have fewer data. For
both models, fit �a� is significantly worse than fit �b� or fit
�c�. For the RSIM at p=0.7, fit �b� and fit �c� have similar
reliability. The corresponding estimates of C22,1 are fully
consistent with that reported above. For the �J Ising model,
only fit �c� is reliable. The estimates of C22,1 are again con-
sistent with those obtained in the RSIM. The universality of
the leading logarithmic correction is well satisfied by our
data.

The scale L0 is very poorly determined and varies signifi-
cantly with Lmin and the type of fit. The ratio of the scales
can also be determined by directly matching the numerical
data. If power-law scaling corrections are negligible, we
should have

Ū22,model 1�L� = Ū22,model 2��L� �90�

for some constant �, which is the ratio of the scales L0
pertaining the two models. By direct comparison, we
obtain L0,RSIM,p=0.7��L0,RSIM,p=0.9, ��16, and L0,�J
��L0,RSIM,p=0.9, with 2���4. Since L0 is independent of

the observable, these relations should not be specific of Ū22
but should apply to any RG invariant quantity: indeed, as can
be seen from the data reported in Table I, they also approxi-

mately hold for Ū4. Note that L0 increases with p in the
RSIM as expected: the Ising critical behavior is observed for
L�Lmin, with Lmin increasing with p.

In order to check the L dependence of the derivative R��,

previously discussed as a function of Ū22, we perform fits of
the MC data of R�� to the behavior

ln
R��

L
= a1 ln ln

L

L0
+ a2 +

a3 ln ln L/L0

ln L/L0
+

a4

ln L/L0
, �91�

taking a1 , . . . ,a4, and L0 as free parameters. According to
theory, we should find a1=− 1

2 . Because of the presence of
five free parameters, this fitting form can be safely used only

TABLE II. Results of the fits. We do not report the results of fit �b� for the �J Ising model with Lmin=16 because this fit is unstable
�apparently, the �2 continuously decreases as b3→−� and L0→0�. DOF is the number of degrees of freedom of each fit.

Lmin

Fit �a� Fit �b� Fit �c�

�2 /DOF C22,1 �2 /DOF C22,1 b3 �2 /DOF C22,1 b3

RSIM p=0.9

8 1844 /5 0.193�1� 3.4 /4 0.280�2� 1.35�1� 1280 /4 0.222�1� 0.91�3�
16 221 /4 0.227�1� 3.1 /3 0.281�3� 1.36�3� 164 /3 0.240�2� 0.85�7�
32 27 /3 0.235�2� 3.1 /2 0.281�5� 1.36�8� 20 /2 0.252�5� 0.88�23�

RSIM p=0.7

8 748 /4 0.276�1� 15 /3 0.356�2� 0.88�2� 37 /3 0.334�1� 1.09�1�
16 95 /3 0.287�1� 14 /2 0.350�5� 0.83�5� 1.7 /2 0.324�1� 1.30�1�
32 0.6 /2 0.297�1� 0.3 /1 0.28�3� −0.3�7� 0.3 /1 0.28�3� −0.3�5�

�J model

8 4211 /3 0.986�4� 2753 /2 0.610�4� 2.01�1� 27 /2 0.345�3� 1.90�2�
16 389 /2 0.449�4� 0.02 /1 0.315�6� 1.79�2�
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for the RSIM at p=0.9. If we fit all data, we obtain a1=
−0.53�5� ��2 /DOF=0.71�; if we discard the result corre-
sponding to L=8, we obtain a1=−0.44�11�. These results are
in good agreement with the theoretical prediction a1=− 1

2 .
Finally, we consider the specific heat Ch,

Ch =
�
H2� − 
H�2�

V
, �92�

where H is the Hamiltonian. The RG analyses of Refs.
�1,2,4,28� predict a diverging ln ln L asymptotic behavior. In
Fig. 8, we show the MC data of Ch at fixed R�=RIs. They are
definitely consistent with the theoretical prediction for its
asymptotic behavior,

Ch � A ln ln�L/L0� + B , �93�

where A and B are nonuniversal parameters and L0 is the
model-dependent scale. Fits of the data to Eq. �93�, taking A,
B, and L0 as free parameters, suggest A�5,0.1,2 for the
RSIM at p=0.9 and 0.7, and the �J Ising model at p=0.95,
respectively. There is a large difference between the values
for RSIM at p=0.9 and 0.7, but this should not be surprising

because the p=0.7 is quite close to the percolation point �46�
p= pperc�0.59.
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